Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 639
Filtrar
1.
Sci Rep ; 14(1): 10525, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720057

RESUMO

The narrow zone of soil around the plant roots with maximum microbial activity termed as rhizosphere. Rhizospheric bacteria promote the plant growth directly or indirectly by providing the nutrients and producing antimicrobial compounds. In this study, the rhizospheric microbiota of peanut plants was characterized from different farms using an Illumina-based partial 16S rRNA gene sequencing to evaluate microbial diversity and identify the core microbiome through culture-independent (CI) approach. Further, all rhizospheric bacteria that could grow on various nutrient media were identified, and the diversity of those microbes through culture-dependent method (CD) was then directly compared with their CI counterparts. The microbial population profiles showed a significant correlation with organic carbon and concentration of phosphate, manganese, and potassium in the rhizospheric soil. Genera like Sphingomicrobium, Actinoplanes, Aureimonas _A, Chryseobacterium, members from Sphingomonadaceae, Burkholderiaceae, Pseudomonadaceae, Enterobacteriaceae family, and Bacilli class were found in the core microbiome of peanut plants. As expected, the current study demonstrated more bacterial diversity in the CI method. However, a higher number of sequence variants were exclusively present in the CD approach compared to the number of sequence variants shared between both approaches. These CD-exclusive variants belonged to organisms that are more typically found in soil. Overall, this study portrayed the changes in the rhizospheric microbiota of peanuts in different rhizospheric soil and environmental conditions and gave an idea about core microbiome of peanut plant and comparative bacterial diversity identified through both approaches.


Assuntos
Arachis , Bactérias , Metagenômica , Microbiota , RNA Ribossômico 16S , Rizosfera , Microbiologia do Solo , Arachis/microbiologia , Índia , Microbiota/genética , RNA Ribossômico 16S/genética , Metagenômica/métodos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Fazendas , Raízes de Plantas/microbiologia , Filogenia , Metagenoma , Biodiversidade
2.
BMC Microbiol ; 24(1): 165, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38745279

RESUMO

Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.


Assuntos
Arachis , Secas , Estresse Fisiológico , Arachis/microbiologia , Arachis/crescimento & desenvolvimento , Arachis/metabolismo , Arachis/fisiologia , Prolina/metabolismo , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/fisiologia , Microbiologia do Solo , Pressão Osmótica , Betaína/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Salicílico/metabolismo , Acinetobacter/metabolismo , Acinetobacter/crescimento & desenvolvimento , Acinetobacter/fisiologia , Cianeto de Hidrogênio/metabolismo , Trealose/metabolismo
3.
J Vis Exp ; (206)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38709040

RESUMO

Aflatoxins are highly carcinogenic secondary metabolites of some fungal species, particularly Aspergillus flavus. Aflatoxins often contaminate economically important agricultural commodities, including peanuts, posing a high risk to human and animal health. Due to the narrow genetic base, peanut cultivars demonstrate limited resistance to fungal pathogens. Therefore, numerous wild peanut species with tolerance to Aspergillus have received substantial consideration by scientists as sources of disease resistance. Exploring plant germplasm for resistance to aflatoxins is difficult since aflatoxin accumulation does not follow a normal distribution, which dictates the need for the analyses of thousands of single peanut seeds. Sufficiently hydrated peanut (Arachis spp.) seeds, when infected by Aspergillus species, are capable of producing biologically active stilbenes (stilbenoids) that are considered defensive phytoalexins. Peanut stilbenes inhibit fungal development and aflatoxin production. Therefore, it is crucial to analyze the same seeds for peanut stilbenoids to explain the nature of seed resistance/susceptibility to the Aspergillus invasion. None of the published methods offer single-seed analyses for aflatoxins and/or stilbene phytoalexins. We attempted to fulfill the demand for such a method that is environment-friendly, uses inexpensive consumables, and is sensitive and selective. In addition, the method is non-destructive since it uses only half of the seed and leaves the other half containing the embryonic axis intact. Such a technique allows germination and growth of the peanut plant to full maturity from the same seed used for the aflatoxin and stilbenoid analysis. The integrated part of this method, the manual challenging of the seeds with Aspergillus, is a limiting step that requires more time and labor compared to other steps in the method. The method has been used for the exploration of wild Arachis germplasm to identify species resistant to Aspergillus and to determine and characterize novel sources of genetic resistance to this fungal pathogen.


Assuntos
Aflatoxinas , Arachis , Fitoalexinas , Sementes , Sesquiterpenos , Estilbenos , Arachis/microbiologia , Arachis/química , Sementes/química , Aflatoxinas/análise , Aflatoxinas/metabolismo , Estilbenos/metabolismo , Estilbenos/análise , Estilbenos/química , Sesquiterpenos/análise , Sesquiterpenos/metabolismo , Sesquiterpenos/química , Cromatografia Líquida de Alta Pressão/métodos
4.
Pestic Biochem Physiol ; 201: 105887, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685218

RESUMO

Aspergillus flavus is a ubiquitous facultative pathogen that routinely infects important crops leading to formation of aflatoxins during crop development and after harvest. Corn and peanuts in warm and/or drought-prone regions are highly susceptible to aflatoxin contamination. Controlling aflatoxin using atoxigenic A. flavus is a widely adopted strategy. However, no A. flavus genotypes are currently approved for use in China. The current study aimed to select atoxigenic A. flavus endemic to Guangxi Zhuang Autonomous Region with potential as active ingredients of aflatoxin biocontrol products. A total of 204 A. flavus isolates from corn, peanuts, and field soil were evaluated for ability to produce the targeted mycotoxins. Overall, 57.3% could not produce aflatoxins while 17.15% were incapable of producing both aflatoxins and CPA. Atoxigenic germplasm endemic to Guangxi was highly diverse, yielding 8 different gene deletion patterns in the aflatoxin and CPA biosynthesis gene clusters ranging from no deletion to deletion of both clusters. Inoculation of corn and peanuts with both an aflatoxin producer and selected atoxigenic genotypes showed significant reduction (74 to 99%) in aflatoxin B1 (AFB1) formation compared with inoculation with the aflatoxin producer alone. Atoxigenic genotypes also efficiently degraded AFB1 (61%). Furthermore, atoxigenic isolates were also highly efficient at reducing aflatoxin concentrations even when present at lower concentrations than aflatoxin producers. The use of multiple atoxigenics was not always as effective as the use of a single atoxigenic. Effective atoxigenic genotypes of A. flavus with known mechanisms of atoxigenicity are demonstrated to be endemic to Southern China. These A. flavus may be utilized as active ingredients of biocontrol products without concern for detrimental impacts that may result from introduction of exotic fungi. Field efficacy trials in the agroecosystems of Southern China are needed to determine the extent to which such products may allow the production of safer food and feed.


Assuntos
Aflatoxinas , Arachis , Aspergillus flavus , Zea mays , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Arachis/microbiologia , Zea mays/microbiologia , China , Agentes de Controle Biológico , Contaminação de Alimentos/prevenção & controle , Genótipo
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124268, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38603962

RESUMO

Aflatoxin B1 (AFB1) is a virulent metabolite secreted by Aspergillus fungi, impacting crop quality and posing health risks to human. Herein, a dual-mode Raman/fluorescence aptasensor was constructed to detect AFB1. The aptasensor was assembled by gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs), while the surface-enhanced Raman scattering (SERS) and fluorescence resonance energy transfer (FRET) effects were both realized. AuNPs were modified with the Raman signal molecule 4-MBA and the complementary chain of AFB1 aptamer (cDNA). MNPs were modified with the fluorescence signal molecule Cy5 and the AFB1 aptamer (AFB1 apt). Through base pairing, AuNPs aggregated on the surface of MNPs, forming a satellite-like nanocomposite, boosting SERS signal via increased "hot spots" but reducing fluorescence signal due to the proximity of AuNPs to Cy5. Upon exposure to AFB1, AFB1 apt specifically bound to AFB1, causing AuNPs detachment from MNPs, weakening the SERS signal while restoring the fluorescence signal. AFB1 concentration displayed a good linear relationship with SERS/fluorescence signal in the range of 0.01 ng/mL-100 ng/mL, with a detection limit as low as 5.81 pg/mL. The use of aptamer assured the high selectivity toward AFB1. Furthermore, the spiked recovery in peanut samples ranged from 91.4 % to 95.6 %, indicating the applicability of real sample detection. Compared to single-signal sensor, this dual-signal sensor exhibited enhanced accuracy, robust anti-interference capability, and increased flexibility, promising for toxin detection in food safety applications.


Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Ouro , Limite de Detecção , Nanopartículas Metálicas , Análise Espectral Raman , Aflatoxina B1/análise , Aptâmeros de Nucleotídeos/química , Arachis/química , Arachis/microbiologia , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Contaminação de Alimentos/análise , Ouro/química , Nanopartículas de Magnetita/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Aspergillus
6.
BMC Plant Biol ; 24(1): 207, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515036

RESUMO

BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum severely affects peanut (Arachis hypogaea L.) yields. The breeding of resistant cultivars is an efficient means of controlling plant diseases. Therefore, identification of resistance genes effective against bacterial wilt is a matter of urgency. The lack of a reference genome for a resistant genotype severely hinders the process of identification of resistance genes in peanut. In addition, limited information is available on disease resistance-related pathways in peanut. RESULTS: Full-length transcriptome data were used to generate wilt-resistant and -susceptible transcript pools. In total, 253,869 transcripts were retained to form a reference transcriptome for RNA-sequencing data analysis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of differentially expressed genes revealed the plant-pathogen interaction pathway to be the main resistance-related pathway for peanut to prevent bacterial invasion and calcium plays an important role in this pathway. Glutathione metabolism was enriched in wilt-susceptible genotypes, which would promote glutathione synthesis in the early stages of pathogen invasion. Based on our previous quantitative trait locus (QTL) mapping results, the genes arahy.V6I7WA and arahy.MXY2PU, which encode nucleotide-binding site-leucine-rich repeat receptor proteins, were indicated to be associated with resistance to bacterial wilt. CONCLUSIONS: This study identified several pathways associated with resistance to bacterial wilt and identified candidate genes for bacterial wilt resistance in a major QTL region. These findings lay a foundation for investigation of the mechanism of resistance to bacterial wilt in peanut.


Assuntos
Arachis , Ralstonia solanacearum , Arachis/genética , Arachis/microbiologia , Transcriptoma , Ralstonia solanacearum/fisiologia , Melhoramento Vegetal , Resistência à Doença/genética , Glutationa/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
7.
Food Funct ; 15(8): 4365-4374, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38545932

RESUMO

Childhood malnutrition remains a serious global health concern, particularly in low-income nations like Uganda. This study investigated the impact of peanut supplementation on the compositions and functions of gut microbiome with nutritional improvement. School children aged 6-9 years from four rural communities were recruited, with half receiving roasted peanut snacks while the other half served as controls. Fecal samples were collected at the baseline (day 0), day 60, and day 90. Microbial DNA was extracted, and 16S rRNA sequencing was performed, followed by the measurement of SCFA concentration in fecal samples using UHPLC. Alpha and beta diversity analyses revealed significant differences between the control and supplemented groups after 90 days of supplementation. Leuconostoc lactis, Lactococcus lactis, Lactococcus garvieae, Eubacterium ventriosum, and Bacteroides thetaiotaomicron, associated with the production of beneficial metabolites, increased significantly in the supplemented group. Acetic acid concentration also increased significantly. Notably, pathogenic bacteria, including Clostridium perfringens and Leuconostoc mesenteroides, were decreased in the supplemented group. The study indicates the potential of peanut supplementation to modulate the gut metabolome, enrich beneficial bacteria, and inhibit pathogens, suggesting a novel approach to mitigating child malnutrition and improving health status.


Assuntos
Arachis , Bactérias , Suplementos Nutricionais , Fezes , Microbioma Gastrointestinal , Humanos , Arachis/microbiologia , Uganda , Criança , Masculino , Feminino , Fezes/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , RNA Ribossômico 16S/genética
8.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38520150

RESUMO

AIMS: In this study, the control effects of synthetic microbial communities composed of peanut seed bacteria against seed aflatoxin contamination caused by Aspergillus flavus and root rot by Fusarium oxysporum were evaluated. METHODS AND RESULTS: Potentially conserved microbial synthetic communities (C), growth-promoting synthetic communities (S), and combined synthetic communities (CS) of peanut seeds were constructed after 16S rRNA Illumina sequencing, strain isolation, and measurement of plant growth promotion indicators. Three synthetic communities showed resistance to root rot and CS had the best effect after inoculating into peanut seedlings. This was achieved by increased defense enzyme activity and activated salicylic acid (SA)-related, systematically induced resistance in peanuts. In addition, CS also inhibited the reproduction of A. flavus on peanut seeds and the production of aflatoxin. These effects are related to bacterial degradation of toxins and destruction of mycelia. CONCLUSIONS: Inoculation with a synthetic community composed of seed bacteria can help host peanuts resist the invasion of seeds by A. flavus and seedlings by F. oxysporum and promote the growth of peanut seedlings.


Assuntos
Aflatoxinas , Sementes , RNA Ribossômico 16S/genética , Sementes/microbiologia , Fungos/genética , Plântula/microbiologia , Bactérias/genética , Arachis/microbiologia
9.
PeerJ ; 12: e16907, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344295

RESUMO

Intercropping is an efficient land use and sustainable agricultural practice widely adopted worldwide. However, how intercropping influences the structure and function of soil bacterial communities is not fully understood. Here, the effects of five cropping systems (sole sorghum, sole millet, sole peanut, sorghum/peanut intercropping, and millet/peanut intercropping) on soil bacterial community structure and function were investigated using Illumina MiSeq sequencing. The results showed that integrating peanut into intercropping systems increased soil available nitrogen (AN) and total nitrogen (TN) content. The alpha diversity index, including Shannon and Chao1 indices, did not differ between the five cropping systems. Non-metric multidimensional scaling (NMDS) and analysis of similarities (ANOSIM) illustrated a distinct separation in soil microbial communities among five cropping systems. Bacterial phyla, including Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi, were dominant across all cropping systems. Sorghum/peanut intercropping enhanced the relative abundance of phyla Actinobacteriota and Chloroflexi compared to the corresponding monocultures. Millet/peanut intercropping increased the relative abundance of Proteobacteria, Acidobacteriota, and Nitrospirota. The redundancy analysis (RDA) indicated that bacterial community structures were primarily shaped by soil organic carbon (SOC). The land equivalent ratio (LER) values for the two intercropping systems were all greater than one. Partial least squares path modeling analysis (PLS-PM) showed that soil bacterial community had a direct effect on yield and indirectly affected yield by altering soil properties. Our findings demonstrated that different intercropping systems formed different bacterial community structures despite sharing the same climate, reflecting changes in soil ecosystems caused by interspecific interactions. These results will provide a theoretical basis for understanding the microbial communities of peanut-based intercropping and guide agricultural practice.


Assuntos
Chloroflexi , Microbiota , Solo/química , Arachis/microbiologia , Carbono , Microbiologia do Solo , Bactérias/genética , Acidobacteria , Proteobactérias , Nitrogênio
10.
Mycologia ; 116(1): 213-225, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38085557

RESUMO

Despite significant research on early and late leaf spot diseases of peanut, in vitro study of the respective causal agents, Passalora arachidicola and Nothopassalora personata, has been limited due to cultural challenges that make growth of these fungi difficult to quantify with traditional methods. Studies were conducted to evaluate the practicality of image analysis to assess radial growth and tissue volume by correlating these assessments to dry mass. Image analysis was also used to estimate radial growth rates for these fungi over time. Tissue area and volume were significantly correlated to dry mass for P. arachidicola in two separate experiments, and for N. personata when medium had been removed from tissues prior to dry mass assessments. Tissue area densities were the same for P. arachidicola and Pseudocercospora smilacicola, evaluated as a nonstromatal cercosporoid comparison, whereas tissue volume densities were greater for P. archidicola and N. personata than P. smilacicola. A quadratic relationship was observed between radial growth and incubation time for all isolates evaluated. Growth rates of P. arachidicola isolates were 2 to 4 times faster than N. personata during the first week of incubation and slowed over time. Growth rates of NP18R, a phenotype variant of N. personata, increased after neighboring colonies met and was nearly 2.5 times faster than the fastest rates observed for P. arachidicola. These experiments demonstrate that when fungal tissues are observable, image analysis is a useful assessment tool for P. arachidicola and N. personata. Care should be taken to monitor fungal phenotypic changes in these species because phenotype degeneration can affect growth rates.


Assuntos
Arachis , Ascomicetos , Arachis/microbiologia , Ascomicetos/crescimento & desenvolvimento
11.
Phytopathology ; 114(3): 549-557, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37856691

RESUMO

Nothopassalora personata is one of the most economically severe pathogens of peanut in the United States. The fungus primarily relies on wind and rain for dispersal, which has been documented up to 10 m from an inoculum source. Spore traps have been used in a wide variety of pathosystems to study epidemiology, document detection, develop alert systems, and guide management programs. The objective of this study was to use spore traps and N. personata-specific qPCR primers to quantitatively evaluate dispersal of N. personata conidia at distances up to 70 m from an infected peanut field and to examine relationships between quantities captured and weather variables. Impaction spore samplers were placed at 4, 10, 30, 50, and 70 m from peanut fields at the Edisto Research and Education Center (six fields) and commercial peanut fields in Barnwell and Bamberg counties (one field each) from 2020 to 2022. Following initial detection, samples were collected at a 48-, 48-, 72-h interval until harvest. N. personata conidia were detected at all locations and distances, documenting dispersal up to 70 m from an inoculum source. This result is a reminder that volunteer management is crucial when rotating peanut in nearby fields. A model for predicting log spore quantities was developed using temperature and humidity variables. Temperature variables associated with observed sampling periods had a negative correlation with N. personata quantities, whereas parameters of relative humidity and mean windspeed were positively correlated.


Assuntos
Ascomicetos , Doenças das Plantas , Humanos , Doenças das Plantas/microbiologia , Tempo (Meteorologia) , Vento , Arachis/microbiologia , Esporos Fúngicos
12.
Plant Dis ; 108(2): 416-425, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37526489

RESUMO

Early leaf spot (Passalora arachidicola) and late leaf spot (Nothopassalora personata) are two of the most economically important foliar fungal diseases of peanut, often requiring seven to eight fungicide applications to protect against defoliation and yield loss. Rust (Puccinia arachidis) may also cause significant defoliation depending on season and location. Sensor technologies are increasingly being utilized to objectively monitor plant disease epidemics for research and supporting integrated management decisions. This study aimed to develop an algorithm to quantify peanut disease defoliation using multispectral imagery captured by an unmanned aircraft system. The algorithm combined the Green Normalized Difference Vegetation Index and the Modified Soil-Adjusted Vegetation Index and included calibration to site-specific peak canopy growth. Beta regression was used to train a model for percent net defoliation with observed visual estimations of the variety 'GA-06G' (0 to 95%) as the target and imagery as the predictor (train: pseudo-R2 = 0.71, test k-fold cross-validation: R2 = 0.84 and RMSE = 4.0%). The model performed well on new data from two field trials not included in model training that compared 25 (R2 = 0.79, RMSE = 3.7%) and seven (R2 = 0.87, RMSE = 9.4%) fungicide programs. This objective method of assessing mid-to-late season disease severity can be used to assist growers with harvest decisions and researchers with reproducible assessment of field experiments. This model will be integrated into future work with proximal ground sensors for pathogen identification and early season disease detection.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Arachis , Fungicidas Industriais , Arachis/microbiologia , Fungicidas Industriais/farmacologia , Estações do Ano , Aeronaves , Doenças das Plantas
13.
Environ Res ; 245: 117977, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38141923

RESUMO

Continuous monocropping can lead to soil sickness and increase of soil-borne disease, which finally reduces crop yield. Microorganisms benefit plants by increasing nutrient availability, participating in auxin synthesis, and defending against pathogens. However, little is known about the influence of short-term successive peanuts cropping on soil properties, enzyme activities, its yield, plant-associated microbes, and their potential correlations in peanut production. Here, we examined the community structure, composition, network structure and function of microbes in the rhizosphere and bulk soils under different monocropping years. Moreover, we assessed the impact of changes in the soil micro-environment and associated soil microbes on peanut yield. Our results showed that increase of monocropping year significantly decreased most soil properties, enzyme activities and peanut yield (p < 0.05). Principal co-ordinates analysis (PCoA) and analysis of similarities (ANOSIM) indicated that monocropping year significantly influenced the fungal community structure in the rhizosphere and bulk soils (p < 0.01), while had no effect on the bacterial community. With the increase of continuous monocropping year, peanut selectively decreased (e.g., Candidatus_Entotheonella, Bacillus and Bryobacter) or increased (e.g., Nitrospira, Nocardioides, Ensifer, Gaiella, and Novosphingobium) the abundance of some beneficial bacterial genera in the rhizosphere. Continuous monocropping significantly increased the abundance of plant pathogens (e.g., Plectosphaerella, Colletotrichum, Lectera, Gibberella, Metarhizium, and Microdochium) in the rhizosphere and negatively affected the balance of fungal community. Besides, these species were correlated negatively with L-leucine aminopeptidase (LAP) activity. Network co-occurrence analysis showed that continuous monocropping simplified the interaction network of bacteria and fungi. Random forest and partial least squares path modeling (PLS-PM) analysis further showed that fungal community, pathogen abundance, soil pH, and LAP activity negatively affected peanut yield. In conclusion, short-term continuous monocropping decreased LAP activity and increased potential fungal pathogens abundance, leading to reduction of peanut yield.


Assuntos
Micobioma , Solo , Solo/química , Arachis/microbiologia , Microbiologia do Solo , Bactérias
14.
Toxins (Basel) ; 15(12)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133171

RESUMO

Aspergillus flavus can cause mildew in corn, peanuts, and other foods as well as animal feed, which seriously endangers human and livestock health; thus, preventing A. flavus contamination is imperative. Previous studies have found that the secondary metabolites of Bacillus subtilis BS-Z15 have broad-spectrum-inhibiting fungal activity, further confirming that the main active inhibiting fungal substance is Mycosubtilin (Myco). In this paper, corn and peanuts were treated with 0, 100, and 200 µg/mL BS-Z15 secondary metabolites (BS-Z15-SMA) for 7 days, and the aflatoxin contamination prevention effect was examined. The results showed that with increasing BS-Z15-SMA concentration, the aflatoxin contamination prevention effect was significantly enhanced. The above toxicity phenomena became more significant with extended BS-Z15-SMA treatment time. Scanning electron microscopy showed that 4 µg/mL Myco treatment resulted in a dented A. flavus surface and breakage of both the conidial stem and the mycelium. Transcriptome results showed that Myco significantly affected gene expression in A. flavus spores. The downregulated genes were significantly enriched in cell wall synthesis, transcription and translation, transmembrane transport pathways, and pathways related to key enzymes for aflatoxin synthesis. These results suggest that Myco could be used as a new bioactive material to prevent aflatoxin synthesis and contamination.


Assuntos
Aflatoxinas , Aspergillus flavus , Humanos , Aspergillus flavus/metabolismo , Bacillus subtilis/metabolismo , Aflatoxinas/análise , Transcriptoma , Grão Comestível/química , Arachis/microbiologia
15.
BMC Plant Biol ; 23(1): 518, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884908

RESUMO

BACKGROUND: Peanut is an important oil crop worldwide. Peanut web blotch is a fungal disease that often occurs at the same time as other leaf spot diseases, resulting in substantial leaf drop, which seriously affects the peanut yield and quality. However, the molecular mechanism underlying peanut resistance to web blotch is unknown. RESULTS: The cytological examination revealed no differences in the conidium germination rate between the web blotch-resistant variety ZH and the web blotch-susceptible variety PI at 12-48 hpi. The appressorium formation rate was significantly higher for PI than for ZH at 24 hpi. The papilla formation rate at 36 hpi and the hypersensitive response rate at 60 and 84 hpi were significantly higher for ZH than for PI. We also compared the transcriptional profiles of web blotch-infected ZH and PI plants at 0, 12, 24, 36, 48, 60, and 84 hpi using an RNA-seq technique. There were more differentially expressed genes (DEGs) in ZH and PI at 12, 36, 60, and 84 hpi than at 24 and 48 hpi. Moreover, there were more DEGs in PI than in ZH at each time-point. The analysis of metabolic pathways indicated that pantothenate and CoA biosynthesis; monobactam biosynthesis; cutin, suberine and wax biosynthesis; and ether lipid metabolism are specific to the active defense of ZH against YY187, whereas porphyrin metabolism as well as taurine and hypotaurine metabolism are pathways specifically involved in the passive defense of ZH against YY187. In the protein-protein interaction (PPI) network, most of the interacting proteins were serine acetyltransferases and cysteine synthases, which are involved in the cysteine synthesis pathway. The qRT-PCR data confirmed the reliability of the transcriptome analysis. CONCLUSION: On the basis of the PPI network for the significantly enriched genes in the pathways which were specifically enriched at different time points in ZH, we hypothesize that serine acetyltransferases and cysteine synthases are crucial for the cysteine-related resistance of peanut to web blotch. The study results provide reference material for future research on the mechanism mediating peanut web blotch resistance.


Assuntos
Arachis , Transcriptoma , Arachis/genética , Arachis/microbiologia , Cisteína/genética , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Acetiltransferases/genética , Serina/genética
16.
Microbiol Res ; 277: 127491, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37769598

RESUMO

Fungal endophytes play critical roles in helping plants adapt to adverse environmental conditions. The root endophyte Phomopsis liquidambaris can promote the growth and disease control of peanut plants grown under monocropping systems; however, how such beneficial traits are produced is largely unknown. Since the plant endophytic microbiome is directly linked to plant growth and health, and the composition of which has been found to be potentially influenced by microbial inoculants, this study aims to clarify the roles of root endophytic bacterial communities in P. liquidambaris-mediated plant fitness enhancement under monocropping conditions. Here, we found that P. liquidambaris inoculation induced significant changes in the root bacterial community: enriching some beneficial bacteria such as Bradyrhizobium sp. and Streptomyces sp. in the roots, and improving the core microbial-based interaction network. Next, we assembled and simplified a synthetic community (SynII) based on P. liquidambaris-derived key taxa, including Bacillus sp. HB1, Bacillus sp. HB9, Burkholderia sp. MB7, Pseudomonas sp. MB2, Streptomyces sp. MB6, and Bradyrhizobium sp. MB15. Furthermore, the application of the simplified synthetic community suppressed root rot caused by Fusarium oxysporum, promoted plant growth, and increased peanut yields under continuous monocropping conditions. The resistance of synII to F. oxysporum is related to the increased activity of defense enzymes. In addition, synII application significantly increased shoot and root biomass, and yield by 35.56%, 81.19%, and 34.31%, respectively. Collectively, our results suggest that the reshaping of root core microbiota plays an important role in the probiotic-mediated adaptability of plants under adverse environments.


Assuntos
Bacillus , Microbiota , Endófitos , Resistência à Doença , Arachis/microbiologia , Bactérias/genética , Raízes de Plantas/microbiologia
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123208, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37527563

RESUMO

This study designs a chemometric framework for quantitatively evaluating aflatoxin B1 (AFB1) in peanuts based on near-infrared (NIR) spectroscopy technique. The NIR spectra of peanut samples exhibiting diverse fungal contamination levels were acquired using a portable NIR spectrometer. Subsequently, appropriate pre-processing techniques were employed for data refinement. To streamline the analysis, the iterative variable subset optimization (IVSO) technique was employed to conduct an initial screening of the pre-processed NIR spectra, eliminating numerous irrelevant variables. Building upon this screening process, the beluga whale optimization (BWO) algorithm was utilized to optimize the selected feature variables further. Subsequently, support vector machine (SVM) models were developed using the refined near-infrared spectral features to test AFB1 in peanuts quantitatively. The results indicate that the SVM model significantly improves detection performance and generalization proficiency, particularly after secondary optimization using BWO-IVSO. Among the different models considered, the SVM model established after BWO-IVSO optimization exhibited the most extraordinary level of generalization, with a root mean square error of prediction of 24.6322 µg∙kg-1, a correlation coefficient of 0.9761, and a relative percent deviation of 4.6999. Overall, this investigation highlights the effectiveness of the proposed NIR spectroscopy model based on BWO-IVSO-SVM for quantitatively analyzing AFB1 in peanuts. The study contributes valuable technical and methodological insights that can serve as a reference for rapidly determining mycotoxins in cereal crops.


Assuntos
Aflatoxina B1 , Arachis , Arachis/química , Arachis/microbiologia , Aflatoxina B1/análise , Máquina de Vetores de Suporte , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Algoritmos , Análise dos Mínimos Quadrados
18.
Microb Ecol ; 86(4): 2703-2715, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37507489

RESUMO

Soil microorganisms play key roles in soil nutrient transformations and have a notable effect on plant growth and health. Different plant genotypes can shape soil microbial patterns via the secretion of root exudates and volatiles, but it is uncertain how a difference in soil microorganisms induced by crop cultivars will respond to short-term seasonal variations. A field experiment was conducted to assess the changes in soil bacterial communities of seven rhizoma peanut (Arachis glabrata Benth, RP) cultivars across two growing seasons, April (Spring season) and October (Fall season). Soils' bacterial communities were targeted using 16S rRNA gene amplicon sequencing. Bacterial community diversity and taxonomic composition among rhizoma peanut cultivars were significantly affected by seasons, cultivars, and their interactions (p < 0.05). Alpha diversity, as estimated by the OTU richness and Simpson index, was around onefold decrease in October than in April across most of the RP cultivars, while the soils from Arblick and Latitude had around one time higher alpha diversity in both seasons compared with other cultivars. Beta diversity differed significantly in April (R = 0.073, p < 0.01) and October (R = 0.084, p < 0.01) across seven cultivars. Bacterial dominant taxa (at phylum and genus level) were strongly affected by seasons and varied towards more dominant groups that have functional potentials involved in nutrient cycling from April to October. A large shift in water availability induced by season variations in addition to host cultivar's effects can explain the observed patterns in diversity, composition, and co-occurrence of bacterial taxa. Overall, our results demonstrate an overriding effect of short-term seasonal variations on soil bacterial communities associated with different crop cultivars. The findings suggest that season-induced shifts in environmental conditions could exert stronger impacts on soil microorganisms than the finer-scale rhizosphere effect from crop cultivars, and consequently influence largely microbe-mediated soil processes and crop health in agricultural ecosystems.


Assuntos
Arachis , Solo , Estações do Ano , Arachis/microbiologia , Ecossistema , RNA Ribossômico 16S/genética , Bactérias/genética , Microbiologia do Solo
19.
Toxins (Basel) ; 15(5)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37235354

RESUMO

Aflatoxins are immunosuppressive and carcinogenic secondary metabolites, produced by the filamentous ascomycete Aspergillus flavus, that are hazardous to animal and human health. In this study, we show that multiplexed host-induced gene silencing (HIGS) of Aspergillus flavus genes essential for fungal sporulation and aflatoxin production (nsdC, veA, aflR, and aflM) confers enhanced resistance to Aspergillus infection and aflatoxin contamination in groundnut (<20 ppb). Comparative proteomic analysis of contrasting groundnut genotypes (WT and near-isogenic HIGS lines) supported a better understanding of the molecular processes underlying the induced resistance and identified several groundnut metabolites that might play a significant role in resistance to Aspergillus infection and aflatoxin contamination. Fungal differentiation and pathogenicity proteins, including calmodulin, transcriptional activator-HacA, kynurenine 3-monooxygenase 2, VeA, VelC, and several aflatoxin pathway biosynthetic enzymes, were downregulated in Aspergillus infecting the HIGS lines. Additionally, in the resistant HIGS lines, a number of host resistance proteins associated with fatty acid metabolism were strongly induced, including phosphatidylinositol phosphate kinase, lysophosphatidic acyltransferase-5, palmitoyl-monogalactosyldiacylglycerol Δ-7 desaturase, ceramide kinase-related protein, sphingolipid Δ-8 desaturase, and phospholipase-D. Combined, this knowledge can be used for groundnut pre-breeding and breeding programs to provide a safe and secure food supply.


Assuntos
Aflatoxinas , Aspergilose , Humanos , Animais , Aspergillus flavus/genética , Aspergillus flavus/metabolismo , Aflatoxinas/análise , Proteômica , Arachis/microbiologia , Melhoramento Vegetal , Inativação Gênica
20.
BMC Microbiol ; 23(1): 85, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36991332

RESUMO

BACKGROUND: Burkholderia pyrrocinia strain P10 is a plant growth-promoting rhizobacterium (PGPR) that can substantially increase peanut growth. However, the mechanisms and pathways involved in the interaction between B. pyrrocinia P10 and peanut remain unclear. To clarify complex plant-PGPR interactions and the growth-promoting effects of PGPR strains, the B. pyrrocinia P10 transcriptome changes in response to the peanut root exudate (RE) were elucidated and the effects of RE components on biofilm formation and indole-3-acetic acid (IAA) secretion were analyzed. RESULTS: During the early interaction phase, the peanut RE enhanced the transport and metabolism of nutrients, including carbohydrates, amino acids, nitrogen, and sulfur. Although the expression of flagellar assembly-related genes was down-regulated, the expression levels of other genes involved in biofilm formation, quorum sensing, and Type II, III, and VI secretion systems were up-regulated, thereby enabling strain P10 to outcompete other microbes to colonize the peanut rhizosphere. The peanut RE also improved the plant growth-promoting effects of strain P10 by activating the expression of genes associated with siderophore biosynthesis, IAA production, and phosphorus solubilization. Additionally, organic acids and amino acids were identified as the dominant components in the peanut RE. Furthermore, strain P10 biofilm formation was induced by malic acid, oxalic acid, and citric acid, whereas IAA secretion was promoted by the alanine, glycine, and proline in the peanut RE. CONCLUSION: The peanut RE positively affects B. pyrrocinia P10 growth, while also enhancing colonization and growth-promoting effects during the early interaction period. These findings may help to elucidate the mechanisms underlying complex plant-PGPR interactions, with potential implications for improving the applicability of PGPR strains.


Assuntos
Arachis , Exsudatos e Transudatos , Arachis/microbiologia , Aminoácidos/metabolismo , Nutrientes , Raízes de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA